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Abstract 

 

This paper analyzes the effects of historical cyclone impacts on the spatial pattern of population 

change in Bangladesh, West Bengal and Odisha during the period 2000 - 2015.  We develop 

high-resolution spatial impact measures using historical information about storm tracks, storm 

radii and wind speeds.  For each population point, gridded at 30-arc-second resolution, we 

compute storm impacts in three periods: 1970-1984, 1985-1999, and 2000-2014.  We assess 

population impacts using a model that embeds household migration decisions in locational 

comparisons based on current and expected future income streams.  

  

We estimate a reduced form of the model that specifies point-level population change during 

2000 - 2015 as an adjustment by households to contemporaneous and past cyclone impacts, as 

well as locational economic factors and government policies that compensate households for 

cyclone damage and disadvantages related to location.  India maintains extensive compensation 

programs, while Bangladesh is closer to a laissez-faire regime. We estimate the model using 

appropriate spatial econometric methods.  Our estimates for present and past cyclone impacts are 

highly significant and consistent with a lagged adjustment process that spans several decades.  In 

Bangladesh, we also find a substantial impact for economic disadvantages due to location.  We 

find smaller cyclone impact parameter values for India and no significance for locational 

disadvantages, which suggest that the Indian compensation regime has significantly dampened 

responsiveness to both factors. 

 

We explore the implications of our findings with model-based predictions of point-level 

population changes with no cyclones since 1970.  Comparison of predicted and actual 

populations in 2015 suggests that affected regions are 8-10% less populous in Bangladesh 

because of past and expected cyclone impacts and locational disadvantages, but only 2% less 

populous in India.  We combine our econometric results and historical cyclone impact measures 

to produce a high-resolution map of implied population displacement within 125 km of the 

coastline in Bangladesh, West Bengal and Odisha.  The map provides a clear picture of the 

cyclone population displacement “shadow”, which varies greatly across coastal sub-regions.   

 

We conclude the paper with a discussion of the implications for alternative policy regimes as 

climate change proceeds, sea-level rise continues, and coastal inundation moves inland.  We 

consider the efficiency and equity implications of damage compensation and laissez-faire 

regimes, and suggest a third alternative that may promote relatively efficient and equitable 

adaptation by focusing public resources on compensation for households that choose to relocate 

as the coastal threat mounts.    
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1.  Introduction 

 

Recurrent cyclonic storms in the Bay of Bengal inflict massive damage on the coastal 

regions of Bangladesh and India.  Extensive research has investigated the incidence, power and 

impacts of cyclones in Bangladesh (Ali 1999; Dasgupta et al. 2014; Hoque 1992; Khalil 1992; 

Khalil 1993), India (Mishra 2014; Srivastava et al. 2000) and the Bay of Bengal more generally 

(Bhaskar Rao 2001; Dash et al. 2004; Mandke and Bhide 2003; Mooley and Mohile 1983; 

Mooley 1980; Muni Krishna 2009;  Rao 2002; Yu and Wang 2009).   

Previous studies of coastal community adaptation in the region have focused on responses 

to specific cyclones or generally-defined coastal hazards (Brouwer et al. 2007; Khalil 1993; 

Khan et al. 2015; Mallick et al. 2011; Mallick and Vogt 2013; Shameem and Momtaz 2014; 

Siddiqui et al. 2013; Sultana and Mallick 2015).  In this paper, we extend the analysis using a  

georeferenced panel database of past cyclonic storms (Bandyopadhyay et al. 2018) for 

Bangladesh, West Bengal and Odisha that includes dates, coastal landfall points, subsequent 

interior paths, and measures of relative power.  We investigate the cyclones’ impact on recent 

population change in the area, using a spatial econometric model based on the economics of 

migration.   

The remainder of the paper is organized as follows.  In Section 2, we develop an 

econometric estimating equation from a model of household location decisions based on 

comparative present and expected future income streams.  Section 3 describes the data used for 

this exercise, while Section 4 discusses model estimation methods and results.  We assess the 

implications for coastal-region population change in Section 5 and potential policy implications 

in Section 6.  Section 7 summarizes and concludes the paper. 
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2.  Model Specification 

A structural model of population change in the coastal regions of Bangladesh, West Bengal 

and Odisha should incorporate at least three factors:  net migration of individuals and 

households, the resident population of fertile-age females, and the fertility rate.  Individuals and 

households respond to economic incentives when deciding whether to migrate into or out of a 

locale (Harris and Todaro 1970; Krichel and Levine 1999; Zhao 1999; Quinn 2006) .  

Origin/destination  comparisons consider the present values of expected income streams, which 

incorporate standard locational economics factors (transport costs to market, local soil 

productivity, etc.) as well as past asset destruction and expected future damage by cyclonic 

storms.  Expected compensation for cyclone damage and locational disadvantages by 

governments or aid agencies also enter the migration calculus.  Past migration in response to 

these factors affects both the number of remaining fertile-age females and their educational 

status.1  The fertility rate is affected by the latter variable, as well as expected future income  

(Wheeler 1984; Cochrane 1988; Pritchett 1994; Sanderson 1998; Gatti 1999; Birdsall et al. 

2001).  

Without compensating intervention by governments or aid agencies, migration should 

favor locations with economic advantages and more moderate storm damage histories, ceteris 

paribus.  Past migration to such advantaged areas should also have expanded their population of 

fertile-age females.  On the other hand, educational “sorting” in migration and higher expected 

income may negatively affect fertility rates in advantaged areas.  In addition, locational “sorting” 

by socioeconomic status may occur if poor, uneducated, high-fertility females move away from 

advantaged areas with higher rents for land and other fixed factors. 

                                                 
1 Migration will be accompanied by educational “sorting” if urban job markets assign a wage premium to 

educational status. 
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When all relevant variables are taken into account, the overall impact of locational 

economics factors and cyclonic storms on population change cannot be determined 

unambiguously.  Compensation payments by governments or aid agencies may neutralize 

economic and climatic advantages, and the joint effects of educational and socioeconomic 

sorting could neutralize the effects of economic factors and cyclonic storm strikes. 

In this paper, we test for overall effects using a reduced-form model that relates population 

change in a locale to its cyclone history, locational economics factors and government 

compensation policies.  We focus on national differences in the latter variable, since Bangladesh 

has little compensation activity while national and regional governments in India offer several 

major programs that compensate localities for locational disadvantages or damage by cyclones 

(Guha, 2017).  Indian national programs include Antyadaya Anna Yojana, which provides 

highly-subsidized food to the rural poor, and the Mid Day Meal program for school children.  

State-sponsored efforts include the following programs in West Bengal:  Khadya Sathi, which 

provides subsidized rice and wheat to residents of cyclone-vulnerable areas; Geetanjali and Amar 

Thikana, which provide free basic residential structures to the rural poor;  Nirmal Bangla, which 

subsidizes basic public health measures; Kanyashree Prakalpa, which provides cash transfers to 

poor rural families that keep girls in school; and Swasthya Sathi, a comprehensive health 

insurance program.   

By the logic of our model, we would expect compensation payments in Indian localities to 

weaken the migration response to cyclonic storm impacts and locational economic 

disadvantages, ceteris paribus.  We test this proposition by fitting the India and Bangladesh 

models separately and comparing the estimated response parameters.  We also introduce dummy 

variable controls to allow for interregional differences within the two countries that are due to 
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unobservable sources of locational attraction.  We formally specify the population change model 

for each country as follows.  We use logarithms of population to allow for interpretation of 

results in terms of change rates.2 

(1) 𝑙𝑜𝑔 𝑝𝑖𝑡 = 𝛽0 + 𝛽1 𝑙𝑜𝑔 𝑝𝑖,𝑡−𝑘 + 𝛽2 log 𝑎𝑖 + ∑ 𝛿𝑛𝑆𝑛 + 

𝑁

𝑛=1

∑ 𝛾𝑚𝐶𝑖,[(𝑡−𝑚𝑘),(𝑡−(𝑚−1)𝑘)] + 

𝑀

𝑚=1

𝜀𝑖 

where 

 pit = Population in locale i, period t 

 pi,t-k = Population in locale i, period (t-k) 

 ai = Economic isolation (transit time to urban market) of locale i 

 Sn = Dummy variable for administrative division n  

       Ci,[(t-mk),(t-(m-1)k)] = Mean cyclone intensity during period [(t-mk),(t-(m-1)k] 

 εi = Regression error term, which may have spatial autocorrelation 

 

Prior expectations:  β1 = 1;  β2 < 0; γm <0; |γm| > |γm+1| 

The past population parameter (β1) will be effectively one if there are no autonomous 

sources of population change for all locales that are not accounted for by the model.  We expect 

the economic isolation parameter (β1) to be negative, reflecting migrants’ smaller expected 

income streams in locales with higher transport costs to market.  We expect the parameters for 

past cyclones (γ) to be negative, reflecting their impact on current and expected income.  

Expectations formation should also weight recent events more heavily, so the absolute value of γ 

should diminish with distance from the present.   

3.  Data 

3.1  Population 

We estimate the model for population change in Bangladesh, West Bengal and Odisha during 

the period 2000-2015.  Our exercise requires high spatial resolution to gauge the local impacts of 

                                                 
2 We retain the log of past population (pi,t-k) on the right-hand side of the model because the value of β1 may well 

differ significantly from 1 (implying “autonomous” change due to common unobserved factors).   



6 

 

past cyclones whose track coordinates are identified.  For comparability between India and 

Bangladesh, we also require compatible population data.  Accordingly, we employ population 

estimates for 2000 (pi,t-k in our model) and 2015 (pit) from the CIESIN3 Gridded Population of 

the World, Version 4 (GPWv4).  These data have 30 arc-second resolution (approximately 1 

kilometer at the equator).  

3.2  Market Isolation 

We proxy market isolation (ai in our model) using Nelson-Uchida measures. These are high-

resolution estimates of travel time along the existing road network to the nearest urban area with 

50,000+ population ( Nelson and Uchida 2008, 2009).4   

3.3  Cyclonic Storm Intensity 

We compute cyclonic storm intensities for each CIESIN population point in a multi-stage 

exercise.  First, we assemble complete georeferenced records for cyclonic storms in the region.  

For the period since 1960, we use georeferenced track information on major cyclones striking 

Bangladesh from the Bangladesh Meteorological Department (BMD).  Equivalent information 

for the Indian coastal region comes from the India Meteorological Department (IMD).  For 

cyclones prior to 1960, we add information from the IBTrACS database maintained by the 

Global Data Center for Meteorology, operated by the US National Oceanic and Atmospheric 

Administration.  The IBTrACS data for the Indian Ocean have been provided by meteorological 

institutions in the region.  We also use them for a few post-1960 cyclones that are not included in 

the data available to us from BMD and IMD.   

                                                 
3 CIESIN is the Center for International Earth Science Information Network, Columbia University. 
4 The assumption that the Nelson-Uchida (NU) Index is exogenous seems warranted in this context.  Our regression 

model relates the change rate of population in 2000-2015 to market access along the road network that existed at the 

beginning of that period.  At worst, the NU Index would have lagged endogeneity from past adjustments of the road 

network to population change.  In this case, however, analysis of the CIESIN data reveals essentially no correlation 

between the population change rate in 2000-2015 and the rate in the previous 20-year period.  The correlation 

coefficients for Bangladesh and India are 0.09 and 0.06, respectively. 
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We ensure cross-source compatibility by using WMO standards for the two commonly-

available measures of cyclonic storm strength:  maximum wind speed (measured in knots (kt)) 

and radial distance from a storm’s center to its zone of maximum wind speed.  We exclude all 

storms rated as tropical depressions because their maximum wind speeds are below 34 kt. 

For each storm, we compute the primary impact zone along its track as the area within the 

radius from centroid to zone of maximum wind speed. 5  Using a methodology of the US 

National Hurricane Center (USNHC 2018), we compute wind speed at each point after landfall 

as a function of wind speed at landfall and elapsed time after landfall.6  We compute wind 

damage potential using a standard exponential formulation (NOAAHRC 2018).7  We intersect 

the complete set of CIESIN population points with the complete set of historical cyclone impact 

zones, generating an historical series of estimated storm damage potentials for each CIESIN 

point.  We divide the historical storm data into 15-year periods, with the latest period from 2000 

to 2014, and compute the mean estimated storm damage potential in each period for the locale at 

each CIESIN point.  These provide our proxies for the cyclonic storm intensities experienced by 

inhabitants of that locale in each period (Ci,[(t-mk),(t-(m-1)k)]) in our regression model).   

Figure 1 maps estimated storm intensities for three periods:  1970-1984, 1985-1999 and 

2000-2014.  Each point is color-coded by relative intensity, from blue or green (no or very weak 

cyclone intensity, respectively) to red and purple (high and extremely high intensity, 

respectively).  In each 15-year period, intensity is high in some areas and zero in others.  

Bangladesh and West Bengal have the most high-intensity areas in 1970-1984; Bangladesh  has 

                                                 
5 For a complete discussion of database construction and impact area computation, see Bandyopadhyay et al. (2018). 
6 In the USNHC model, the ratio [wind speed/wind speed at landfall] decays exponentially with time after landfall.  

The absolute value of the exponential parameter is a positive function of wind speed at landfall (i.e., the rate of 

decay is greater for storms with higher initial wind speeds). 
7 In our computation, wind damage potential is proportional to the square of wind speed. 
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the most in 1985-1999, although West Bengal and Odisha also have high-intensity areas; overall 

cyclone intensity is lower in 2000-2014, although Bangladesh and Odisha both have areas of 

high intensity. 

3.4  Geographic Controls 

We include controls for first-level administrative divisions (states in India, divisions in 

Bangladesh) and second-level administrative divisions (districts in India, upazilas in Bangladesh) 

that overlap with the three major urban centers in each country that serve as poles of attraction 

for coastal out-migrants (Kolkata, Cuttack and Bhubaneswar in India; Dhaka, Chittagong and 

Khulna in Bangladesh). 

4.  Model Estimation and Results 

Our estimation database contains records for 428,006 points (162,660 in Bangladesh, 

97,318 in West Bengal, 168,028 in Odisha).  The close spacing of these points (30 arc-seconds, 

approximately 1 kilometer) entails a high likelihood that the error term in our estimation model 

has significant spatial autocorrelation.  Accordingly, we restrict our estimation exercise to sparse 

random samples of 1,000 observations whose point spacing makes spatial autocorrelation less 

likely.  We estimate a standard spatial autoregressive model developed by Pisati (2001)8 and test 

for the significance of spatial autocorrelation. 

Tables 1 and 2 report estimation results from 10 random samples for Bangladesh and the 

Indian states, respectively.9  A priori, we had the following expectations for parameter estimates: 

log population 2000: effectively 1.0 for both countries;  cyclone intensity:  negative, with 

                                                 
8 We use Posati’s spatreg in Stata. 
9 We have also experimented with sparse-sample estimation of a non-linear model that allows for variation in 

responsiveness to storm intensity with distance from the coastline.  In all cases, we find no significant effect for 

distance from the coastline.  Results are available from the authors on request. 
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declining weights for past periods and lower absolute values for India (reflecting compensation 

payment policies); market isolation index: negative, with a lower absolute value  

Figure 1:  Cyclonic storm intensities in Bangladesh, West Bengal and Odisha, 1970 - 2014   
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for India (reflecting locational compensation policy);  ρ (autocorrelation parameter):  

insignificant for random samples of 1,000 widely-scattered points). 

The results in Tables 1 and 2 are highly robust across 10 random samples of 1,000 

observations10  and confirm our prior expectations, with one exception (for market isolation in 

India). All estimates for log population 2000 are effectively 1.0 (no autonomous common trend). 

All estimates for contemporaneous and one-period-lagged cyclone intensity have the expected 

negative sign and are highly significant, with lower weights for lagged cyclone intensity and 

much lower weights overall for India, as expected.  For both countries, the parameters for two-

period lagged cyclone intensity all have the expected negative sign but only attain classical 

significance in 1 of 10 cases.  We obtain the expected results for market isolation for 

Bangladesh, with negative signs in all 10 cases and classical significance in 8 of 10 cases.  The 

Indian market isolation results are much weaker, as expected, with classical significance in only 

3 of 10 cases.  However, the sign is also positive in 9 of 10 cases, which suggests that Indian 

locational policy may have slightly over-compensated for locational disadvantages, if anything. 

Our results for the geographic controls are generally significant, and their varying signs 

suggest substantial variation in unobserved regional characteristics that affect population change.  

We have excluded Dhaka from the Bangladesh district set (one dummy has to be excluded to 

avoid total collinearity), so the results should be interpreted as population growth rate differences 

from Dhaka district, after other model variables are taken into account.  Our results indicate that 

Chittagong and Sylhet districts had significantly faster population growth than Dhaka district, 

ceteris paribus, while Barisal, Khulna and Rajshahi had significantly slower population growth.  

Among major urban centers, population growth was significantly higher than otherwise predicted 

                                                 
10  These are 0.61% and 0.38% samples for Bangladesh and India, respectively. 
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by the model in Dhaka, lower in Khulna, and as predicted (no significant deviation) in 

Chittagong.   

For the Indian states we have excluded the dummy variable for Odisha (again, to avoid 

total collinearity), so the result for West Bengal should be interpreted as the difference from 

population growth in Odisha.  The result for West Bengal attains classical significance in 8 of 10 

cases and is positively-signed for all, suggesting faster population growth there (ceteris paribus).  

Our results for major urban centers are mixed.  The estimates for Kolkata are significant in only 

2 of 10 cases, both positive (suggesting faster growth than expected, ceteris paribus), but sign 

variations and the general weakness of the results suggest little actual difference from 

expectation once other model variables are accounted for.  The results for Cuttack have 

consistently-negative signs and classical significance in 7 of 10 cases, suggesting slower-than-

expected population growth (ceteris paribus).  The converse is true for Bhubaneswar, which has 

consistently-positive signs and classical significance in all 10 cases. 

The results for the spatial autocorrelation parameter ρ strongly suggest that our use of 

sparse random samples has neutralized the problem.  For Bangladesh, the ρ estimates are all very 

small, attain classical significance in only 3 of 10 cases, exhibit alternating signs within that 

subset of 3, and also across the 7 of 10 that are insignificant.  For India, the ρ estimates are all 

extremely small, attain significance in only 2 of 10 cases, and have a sign variation in the other 

cases.   
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Table 1:  Bangladesh: spatial estimates 

 

Dependent variable: log Population 2015 

 

    (1)    (2)    (3)    (4)    (5)    (6)   (7)   (8)   (9)   (10) 

log Pop. 2000 0.997 0.988 0.998 0.995 1.003 1.003 0.999 0.982 0.995 0.996 

 (174.07)** (181.92)** (154.75)** (150.85)** (166.94)** (163.89)** (179.83)** (172.99)** (157.38)** (178.09)** 

 

Cyclone Intensity, -1.162 -1.470 -1.486 -1.426 -1.733 -1.497 -1.499 -1.393 -1.507 -1.530 

  2000-2014 (7.15)** (9.29)** (8.49)** (7.79)** (11.31)** (9.61)** (8.15)** (8.35)** (7.97)** (9.36)** 

 

Cyclone Intensity, -0.573 -0.511 -0.590 -0.632 -0.645 -0.844 -0.678 -0.584 -0.655 -0.702 

  1985-1999 (5.84)** (5.04)** (5.51)** (5.85)** (6.90)** (8.63)** (7.30)** (5.50)** (5.54)** (7.01)** 

 

Cyclone Intensity, -0.440 -0.129 -0.306 -0.056 -0.202 -0.007 -0.063 -0.152 -0.271 -0.309 

  1970-1984 (2.64)** (0.82) (1.75) (0.32) (1.24) (0.04) (0.36) (0.88) (1.36) (1.84) 

 

log Market  -0.011 -0.011 -0.009 -0.006 -0.007 -0.010 -0.004 -0.008 -0.008 -0.010 

  Isolation Index (3.39)** (3.36)** (2.41)* (1.73) (1.99)* (3.02)** (1.35) (2.50)* (2.01)* (2.83)** 

Districts 

Barisal -0.070 -0.079 -0.098 -0.104 -0.098 -0.106 -0.091 -0.067 -0.087 -0.067 

 (3.85)** (4.60)** (5.01)** (5.40)** (5.93)** (5.88)** (4.87)** (3.69)** (4.11)** (3.49)** 

 

Chittagong 0.092 0.099 0.072 0.075 0.065 0.075 0.085 0.100 0.070 0.077 

 (8.03)** (8.72)** (5.42)** (5.91)** (5.23)** (6.31)** (6.36)** (8.46)** (5.07)** (6.21)** 

 

Khulna -0.087 -0.092 -0.138 -0.124 -0.125 -0.126 -0.113 -0.097 -0.139 -0.111 

 (8.65)** (8.73)** (12.12)** (11.68)** (11.56)** (11.80)** (10.96)** (9.27)** (10.98)** (10.65)** 

 

Rajshahi -0.035 -0.048 -0.081 -0.062 -0.075 -0.058 -0.058 -0.042 -0.076 -0.063 

 (3.71)** (4.94)** (7.49)** (6.17)** (7.45)** (6.06)** (5.92)** (4.51)** (6.63)** (6.44)** 

 

Sylhet 0.107 0.108 0.070 0.082 0.081 0.098 0.100 0.100 0.093 0.095 

 (9.14)** (9.41)** (5.15)** (6.47)** (6.72)** (8.64)** (8.67)** (8.50)** (6.94)** (8.26)** 

Urban Centers 

Dhaka 0.238 0.262 0.263 0.240 0.287 0.263 0.276 0.346 0.226 0.242 

 (8.76)** (8.71)** (8.50)** (7.71)** (12.20)** (9.39)** (8.74)** (14.27)** (6.82)** (8.32)** 

 

Chittagong 0.011 0.002 -0.013 0.009 -0.012 0.019 0.006 0.021 0.011 0.028 

 (0.32) (0.06) (0.29) (0.21) (0.30) (0.65) (0.16) (0.70) (0.32) (0.71) 

 

Khulna -0.146 -0.132 -0.134 -0.129 -0.145 -0.130 -0.135 -0.119 -0.123 -0.145 

 (4.32)** (3.93)** (2.37)* (2.81)** (3.27)** (3.88)** (4.06)** (2.77)** (3.96)** (3.24)** 

 

Constant 0.559 -0.036 0.465 0.399 0.663 0.950 0.413 0.082 0.492 0.595 

 (3.37)** (0.21) (3.00)** (2.25)* (4.47)** (5.59)** (2.92)** (0.43) (2.76)** (3.69)** 

 

ρ (spatial -.039 .060* -.021 -.013 -.059* -.103* -.021 .046 -.024 -.042 

    autocorrelation) (1.36) (2.06) (0.77) (0.42) (2.22) (3.44) (0.82) (1.44) (0.79) (1.51) 

 

Observations 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Absolute value of z statistics in parentheses           

* significant at 5%; ** significant at 1%           



13 

 

 

 

 

Table 2:  India spatial estimates 

 
Dependent variable: log Population 2015 

 

    (1)    (2)    (3)    (4)    (5)   (6)   (7)   (8)   (9) (10) 

 

log Pop. 2000 1.000 1.001 0.998 1.000 0.994 1.003 0.995 0.998 1.000 1.001 

 (425.41)** (360.54)** (380.30)** (382.32)** (343.98)** (377.19)** (366.00)** (364.99)** (374.66)** (351.63)** 

 

Cyclone Intensity, -0.548 -0.446 -0.447 -0.319 -0.439 -0.546 -0.370 -0.397 -0.475 -0.499 

  2000-2014 (6.01)** (4.86)** (5.49)** (3.53)** (4.67)** (6.34)** (4.80)** (4.44)** (5.53)** (5.49)** 

 

Cyclone Intensity, -0.185 -0.263 -0.184 -0.226 -0.239 -0.368 -0.323 -0.302 -0.170 -0.261 

  1985-1999 (2.99)** (4.58)** (3.33)** (3.87)** (4.17)** (6.04)** (5.86)** (5.09)** (3.04)** (4.27)** 

 

Cyclone Intensity, -0.118 -0.103 -0.006 -0.210 -0.004 -0.091 -0.114 -0.003 -0.004 -0.124 

  1970-1984 (1.65) (1.27) (0.08) (2.89)** (0.05) (1.23) (1.57) (0.04) (0.06) (1.67) 

 

log Market 0.004 0.004 0.003 0.002 0.001 0.004 0.003 0.001 -0.001 0.000 

  Isolation Index (2.67)** (2.35)* (1.86) (1.10) (0.51) (2.36)* (1.93) (0.67) (0.55) (0.20) 

States 

West_Bengal 0.020 0.018 0.030 0.010 0.028 0.017 0.008 0.021 0.038 0.027 

 (3.00)** (2.35)* (4.34)** (1.39) (3.96)** (2.33)* (1.02) (3.00)** (5.32)** (3.45)** 

Urban Centers 

Kolkata -0.001 0.008 0.014 -0.010 -0.005 0.044 0.003 0.022 -0.003 0.014 

 (0.06) (0.82) (1.57) (0.97) (0.54) (4.53)** (0.38) (2.03)* (0.30) (1.57) 

 

Cuttack -0.026 -0.040 -0.035 -0.039 -0.018 -0.026 -0.029 -0.020 -0.037 -0.045 

 (1.64) (3.31)** (2.87)** (2.77)** (1.43) (2.00)* (2.34)* (1.47) (3.02)** (3.51)** 

 

Bhubaneswar 0.037 0.071 0.073 0.049 0.025 0.036 0.047 0.059 0.049 0.065 

 (2.10)* (5.58)** (4.90)** (3.60)** (1.56) (2.11)* (3.20)** (3.48)** (3.40)** (4.75)** 

 

Constant 0.245 0.255 0.289 0.201 0.278 0.278 0.155 0.273 0.408 0.361 

 (4.94)** (4.73)** (5.78)** (3.99)** (5.28)** (5.35)** (3.04)** (5.29)** (8.67)** (6.86)** 

 

ρ (spatial -.010 -.012 -.016 -.0002 -.009 -.019 .012 -.011 -.037* -.030* 

   autocorrelation) (1.03) (1.10) (1.60) (0.02) (0.80) (1.76) (1.11) (1.04) (3.70) (2.71) 

 

Observations 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

 

Absolute value of t statistics in parentheses           

* significant at 5%; ** significant at 1%           

 

 

.   
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We conclude that spatial autocorrelation is not a significant problem for our sparse random 

sampling approach, so significance tests for non-spatial estimators will not be affected by this 

problem.  Accordingly, we obtain summary results for each country via OLS bootstrap 

estimation with 100 random samples of 1000 observations.  Table 3 displays the results, which 

are all consistent with the results we report for Tables 1 and 2.

5.  Implications of the Results for Population Displacement 

 

Our econometric results provide strong evidence that cyclonic storms have significantly 

affected the spatial distribution of population in Bangladesh, West Bengal and Odisha.  

However, they do not provide a sense of the orders of magnitude involved.  To explore this issue, 

we use the estimation results in Table 3 to extrapolate the experience of coastal areas that were 

completely or largely cyclone-free during the past several decades.  We predict population 

changes by locale in 2000-2015 under cyclone-free conditions, compute predicted 2015 

populations using 2000 populations, and compare the results with actual populations in 2015.   
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Table 3:  Bootstrap estimation results 

 

Dependent variable:  log Population 2015 

 

                                                   Bangladesh India 

 

log Population 2000 0.989 0.998 

 (265.04)** (518.02)** 

 

Cyclone Intensity, -1.459 -0.408 

  2000-2014 (7.71)** (6.02)** 

 

Cyclone Intensity, -0.639 -0.292 

  1985-1999 (8.49)** (5.30)** 

 

Cyclone Intensity, -0.101 -0.089 

  1970-1984 (0.76) (1.42) 

 

log Market Isolation -0.010 0.003 

  Index (2.76)** (1.55) 

Bangladesh Districts 

Barisal -0.101  

 (5.54)**  

 

Chittagong 0.070  

 (4.26)**  

 

Khulna -0.125  

 (8.57)**  

 

Rajshahi -0.069  

 (4.76)**  

 

Sylhet 0.081  

 (5.40)**  

Bangladesh Urban Centers 

Dhaka 0.277  

 (7.29)**  

 

Chittagong 0.014  

 (1.01)  

 

Khulna -0.134  

 (13.07)**  

India States 

West_Bengal  0.012 

  (3.05)** 

India Urban Centers 

Kolkata  0.011 

  (0.77) 

 

Cuttack  -0.035 

  (2.97)** 

 

Bhubaneswar  0.055 

  (3.75)** 

 

Constant 0.374 0.208 

 (9.93)** (15.32)** 

 

Observations 162,657 265,343 

Samples      100             100 

Sample Size    1000            1000 

 

t statistics in parentheses   

* significant at 5%; ** significant at 1%  
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5.1  Overall Impact Magnitudes 

Table 4 displays comparative results for  actual and predicted populations in 2015, at 

varying distances from the coastline.  The results highlight both the overall magnitude of cyclone 

impacts and the strongly-neutralizing effect of compensation policies in the Indian states.  In 

Bangladesh, the results suggest that cyclone impacts are accountable for population reductions of 

7.7% - 9.7% in zones at varying distances from the coastline: 450,000 fewer people within 10 

km, 750,000 (20 km), 1.4 million (50 km) and 3.1 million (100 km).  Significantly-lower 

responsiveness on the Indian side translates to percent reductions of 1.9 - 2.6 % (75,000 fewer 

people, 161,000, 368,000 and 1.2 million at 10, 20, 50 and 100 km, respectively).  

Table 4:  Population displacement predictions 

 

Country 

Distance from 

Coastline  

(km) 

\Population, 

2015 

Population 

With No 

Cyclones, 

1970-2014 

Population 

Difference 

% Reduction 

from Cyclone 

Impacts 

Bangladesh 10 5,432,276 5,882,710 450,434 7.66 

India 10 3,389,520 3,464,402 74,882 2.16 

      

Bangladesh 20 8,885,658 9,615,253 729,595 7.59 

India 20 7,113,229 7,273,730 160,501 2.21 

      

Bangladesh 50 15,482,855 16,835,231 1,352,376 8.03 

India 50 19,017,167 19,385,000 367,833 1.90 

      

Bangladesh 100 28,997,224 32,123,010 3,125,786 9.73 

India 100 45,354,009 46,539,978 1,185,969 2.55 

 

5.2  The Cyclone’s Shadow 

As Figure 1 shows, cyclonic storm intensities have differed greatly over space and time 

since 1970.  Our econometric results indicate that local populations have responded significantly, 

with progressively-lower weights on impacts in past periods.  In addition, the results suggest that 

Indian compensation policies have lowered responsiveness in West Bengal and Odisha.  Figure 2 
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combines the point-scale cyclone intensity information displayed in Figure 1 with the population 

responsiveness results in Table 3.  It displays the “cyclone’s shadow” -- the relative population 

displacement attributable to cyclonic storm activity since 1970. 

Figure 2:  The cyclone’s shadow: relative population displacement impacts since 1970 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 clearly shows the overall differences between Bangladesh and India that are 

summarized in Table 4.  However, differences within areas are also pronounced.  In Bangladesh, 

two broad bands of heavy displacement impact are surrounded by lighter bands in the west, 

center and south.  Odisha also exhibits pronounced differences, with relatively heavy 

displacement impacts in southern and central coastal areas.  West Bengal displays a rough 

geographic impact progression from west to east. 
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6.  Policy Implications 

We draw three major conclusions from our results.  First, largely-uncompensated cyclone 

impacts and locational economic disadvantages in Bangladesh have yielded 8-10% population 

displacements from affected areas since 2000, via net effects on migration, fertile-age female 

residence and the fertility rate.  The magnitudes are large, involving millions of people.  Second, 

displacements from affected areas in India during the same period have been much smaller in 

both absolute and percentage terms, because Indian compensation policies have significantly 

reduced responsiveness to cyclonic storm threats and locational economic disadvantages.  Third, 

cyclone intensities exhibit great geographic variation, and this is reflected in spatially-varied 

population displacement in both countries.  Where local cyclone history is relatively benign, 

people have tended to stay put. 

We consider the potential implications of these findings in light of our previous paper 

(Bandyopadhyay et al. 2018) on cyclonic storms in the region since 1877.  Three patterns are 

most evident.  First, the median locus of cyclone strikes during the past century has shifted 

progressively eastward, from north-central Odisha to western Bangladesh.  Second, the 

locational variance of strikes has increased, so that all sections of the coast remain threatened 

despite the eastward trend.  Third, cyclonic wind speeds have increased by about 36% since 1960  

It is probably not accidental that these changes have occurred during the period of pronounced 

global warming since 1960 (NASA/Goddard 2018). 

In light of our results and a large body of scientific evidence, the following predictions 

seem warranted:  Global warming will continue for decades, and sea level rise may well 

accelerate.  Although timing remains uncertain,  mainstream projections of sea-level rise now 

include an increase of one meter or more by 2100 (NOAA 2017).  An increase of this magnitude 
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would submerge large coastal areas by the end of the century (Dasgupta et al. 2009, 2010).  And 

the previously-cited association between global warming and the intensity of cyclonic storms in 

the Indian Ocean region since 1960 suggests that cyclone impacts and potentially-catastrophic 

storm surges will not diminish and may well increase. 

In consequence, millions of coastal inhabitants may well retreat inland, either by choice or 

by force majeure.  The forced outcome would be tragic, and our empirical results for Bangladesh 

and India suggest that the pace and welfare implications of voluntary migration depend on 

government policies.  In a laissez-faire regime, population relocation will occur as households 

respond to perceived threats, bearing the displacement cost themselves.  Laissez-faire will ensure 

relocation by default as coastal conditions worsen, but at the cost of potentially-severe inequity 

among households differentiated only by location.  In a compensation regime motivated by 

equity concerns, households will tend to stay put until force majeure intervenes via ocean 

encroachment and potentially-deadly storm surges.  Maintaining equity in the compensation 

regime will entail escalating expenditures as the ocean moves inland and cyclone impacts 

intensify.  Ultimately, the budgetary strain may prove intractable, leaving millions to fend for 

themselves. 

In light of equity and budgetary concerns, neither laissez-faire nor automatic on-site 

compensation seems desirable, given the inexorable advance of the sea level and deadly cyclone 

threats.  Rather, policy makers concerned with both efficiency and equity may want to consider a 

third approach: successive designation of threat zones as encroachment continues, with 

compensation from available funds focused on households that choose to relocate.  While 

administration of this approach would have its own problems, it might well yield superior 

outcomes.  And it would have the additional virtue of signaling the inevitability and severity of 
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the encroachment problem, while promoting dialog on efficiency/equity trade-offs, appropriate 

budgetary allocations, and the time-phasing of threat-zone delineation. 

7.  Summary and Conclusions 

This paper has analyzed the effects of historical cyclone impacts on the spatial pattern of 

population change in Bangladesh, West Bengal and Odisha during the period 2000 - 2015.  We 

develop high-resolution spatial impact measures using historical information about storm tracks, 

storm radii and wind speeds.  For each population point, gridded at 30-arc-second resolution, we 

compute storm impacts in three periods: 1970-1984, 1985-1999, and 2000-2014.  We assess 

population impacts using a model that embeds household migration decisions in locational 

comparisons based on current and expected future income streams.  

We estimate a reduced form of the model that specifies point-level population change 

during 2000 - 2015 as an adjustment by households to contemporaneous and past cyclone 

impacts, as well as locational economic factors and government policies that compensate 

households for cyclone damage and disadvantages related to location.  India maintains extensive 

compensation programs, while Bangladesh is closer to a laissez-faire regime. We estimate the 

model using appropriate spatial econometric methods.  Our estimates for present and past 

cyclone impacts are highly significant and consistent with a lagged adjustment process that spans 

several decades.  In Bangladesh, we also find a substantial impact for economic disadvantages 

due to location.  We find smaller cyclone impact parameter values for India and no significance 

for locational disadvantages, which suggest that the Indian compensation regime has 

significantly dampened responsiveness to both factors. 

We explore the implications of our findings with model-based predictions of point-level 

population changes with no cyclones since 1970.  Comparison of predicted and actual 
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populations in 2015 suggests that affected regions are 8-10% less populous in Bangladesh 

because of past and expected cyclone impacts and locational disadvantages, but only 2% less 

populous in India.  We combine our econometric results and historical cyclone impact measures 

to produce a high-resolution map of implied population displacement within 125 km of the 

coastline in Bangladesh, West Bengal and Odisha.  The map provides a clear picture of the 

cyclone population displacement “shadow”, which varies greatly across coastal sub-regions.   

We conclude the paper with a discussion of the implications for alternative policy regimes 

as climate change proceeds, sea-level rise continues, and coastal inundation moves inland.  We 

consider the efficiency and equity implications of damage compensation and laissez-faire 

regimes, and suggest a third alternative that may promote relatively efficient and equitable 

adaptation by focusing public resources on compensation for households that choose to relocate 

as the coastal threat mounts.    
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